

+NorthStar ALD

Atomic Layer Deposition (ALD)

- ALD provides Uniform, controlled, conformal deposition of oxide, nitride, and metal thin films on a nanometer scale.
- ALD is a self limiting thin film deposition technique based on sequential gas phase chemical processes.
- Most ALD reactions use two chemicals, typically called precursors. These precursors react with a surface one-ata-time in a sequential manner.
- By exposing the growth surface to the precursors repeatedly, a thin film is deposited.

NorthStar[™] ALD

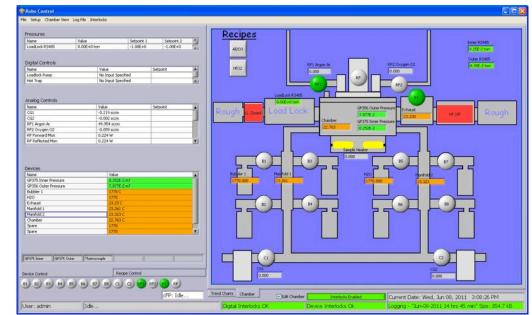
Features

- Hot wall deposition chamber
- Up to 8 precursor lines, plus gas lines
- Precursor sources located in vented cabinet
- Rapid Substrate Heating to 500 °C
- Small Chamber Volume and Highly efficient pumping
- Software with Recipe flexibility for research/deposition on very high aspect ratio structures
- Small footprint
- Multi phase traps and filters for safe handling of exhausts

NorthStar[™] ALD System

- Thermal or energy enhanced ALD
- Sample introduction is rapid and convenient with a quick hatch or the optional load lock.
- Compatible with in-situ RGA, Ellipsometry, and QCM
- RoboALD software/system automation increases process reproducibility.
- The NorthStar[™] ALD system can be interfaced with other deposition and metrology tools.

NorthStar[™] Atomic Layer Deposition



Engines for Thin Film Innovation

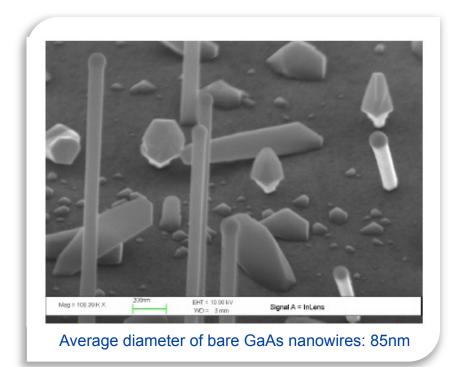

RoboALD[™] Process Control Package

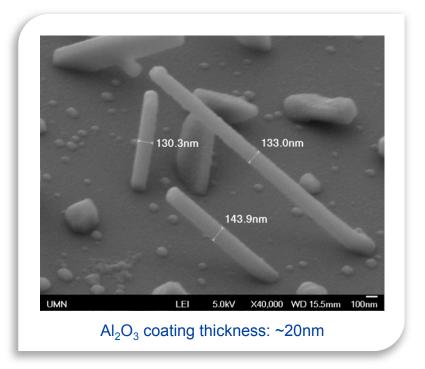
- Recipe definition with flexible parameters
- Fast ALD Valve Control
- Temperature Control
 - Substrate Heating
 - Chamber Wall
 - Precursor
 - Gas Lines
 - Exhaust Line
- Carrier Gas Control
- Data logging of parameters
- Process alarms
- Residual Gas Analyzer Monitoring
- Automated Pumpdown and Venting
- PLC Controller for real time control

Integrated ALD/UHV Deposition System

Engines for Thin Film Innovation

ALD Materials and Applications


High-k Dielectrics	Al ₂ O ₃ , HfO ₂ , ZrO ₂ , PrAIO, Ta ₂ O ₅ , La ₂ O ₃	Transistor gate oxide, DRAM capacitors, on both Si and III-Vs
ALD Metals	Ru, Pd, Ir, Pt, Rh, Co, Cu, Fe, Ni, TiN, WN, TaN	Metallic for interconnects, diffusion barriers, conductive gate electrodes
Nanostructures & Nanophotonic Crystals	ZnO, ZnS:Mn,TiO ₂ , Ta ₃ N ₅	Coatings inside porous alumina, inverted opals, coating nanoparticles, nanowires, nanolaminates
Environmental barrier/ OLED passivation	Al ₂ O ₃ , SiO ₂	Food packaging polymers, biocompatible polymers
Catalytic Membranes/ Gas Separation	Pt, Ir, Co, TiO ₂ , V ₂ O ₅ , SiO ₂	
Biocompatible Coatings	TiN, ZrN, TiAIN	
Optical Coatings	AI_2O_3 , TiO ₂ , ZnO, SnO ₂ , ZnS, Ta ₂ O ₅	Anti-refection, optical filter, UV blocking, solar cells, fuel cells
Sensors	SnO ₂ , Ta ₂ O ₅	Gas sensors, pH sensors



Engines for Thin Film Innovation

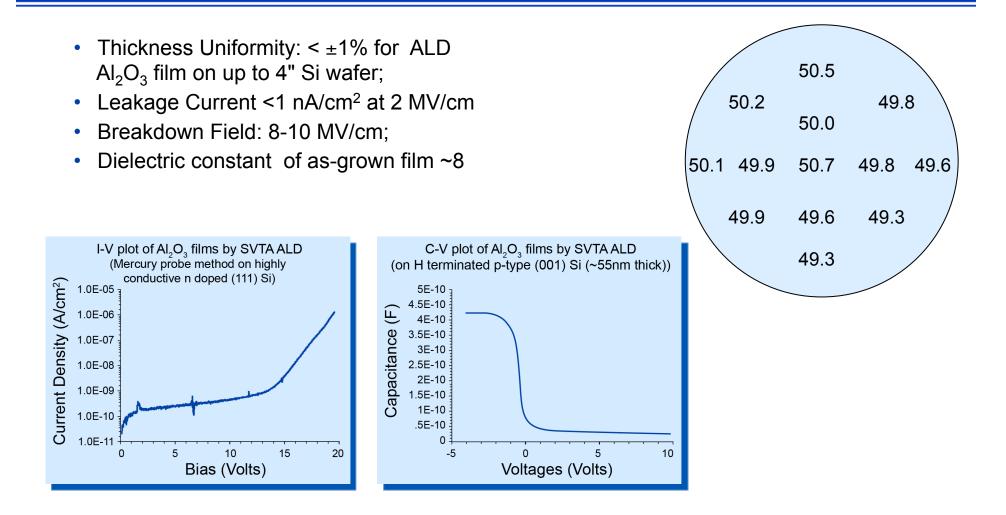
GaAs Nanowires with Al₂O₃ Coating by ALD at SVT Associates

Al₂O₃ coating by ALD shows excellent conformity and uniformity



In/Ex–Situ Characterization of ALD Oxide Films

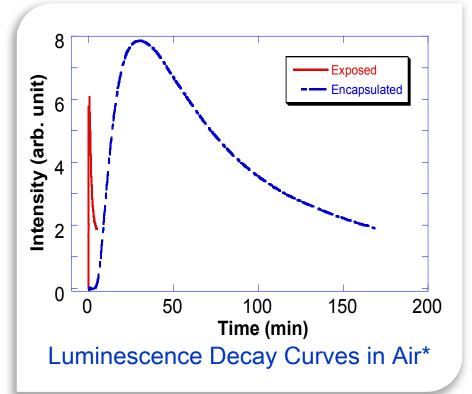
Room Temperature


150 °C

250 °C

Engines for Thin Film Innovation

Electrical Characterization of Al₂O₃

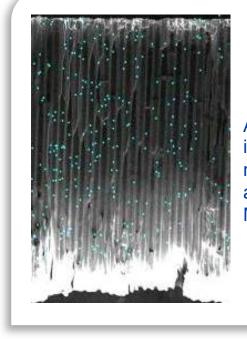


Engines for Thin Film Innovation

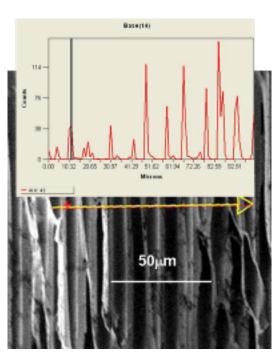
©2012 SVT Associates, Inc. All Rights Reserved

11

ALD Al₂O₃ Film as a Barrier Layer



An illuminated OLED


- SVT Associates demonstrated the half-life of encapsulated short-lived OLED increases from ~1 minute to over an hour indicating the great potential of ALD for forming highly effective barrier layers.
- Corrosion of backside cathode metal can be inhibited by the barrier layer.

Microchannel Plates (MCP)

A cross sectional SEM image and AI elemental mapping (blue dots) of an AI_2O_3 coated glass MCP. (Aspect ratio: 60)

An enlarged cross sectional SEM image and an Al elemental line scan across many pore channels.

The NorthStar[™] ALD System

- Flexible process parameters for Research – Development environment
- LabVIEW[®] Software
- Thermal Process and Plasma Process
- Material demonstrations available
- Lab scientists provide process support
- Interface to other systems (esp. UHV)
- Worldwide service support

