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GaN-based UV Photodetectors and Photocathodes

UV imaging
« UV curing and aging

«  Air & water Purification

« Fire & electric arc detection

« Missile tracking & guidance

« Maskless UV photolithography
« High current emitters (in RF e-guns) \ < B‘actenh M
« Secure space or underwater communication s &num&cm‘
«  Spectroscopy (bio/chemical hazard monitoring) "
« High brightness electron source for RF e-guns
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High Performance llI-Nitride Devices — Grown By Molecular Beam Epitaxy

* High Electron Mobility Transistors: HEMT devices based on AlGaN/GaN
heterostructures have demonstrated great potential for applications in very high power,
high frequency and high temperature amplifiers. Further improvements in device
performance is predicted for HEMTs with higher Al composition including AIN/GaN
HEMTs, currently being developed at SVTA. Partially Funded by DoD Grants
#W911QX-06-C-0083 and #W911NF-06-C-0190.

« UV Photodiodes and Photocathodes: High sensitivity, visible-blind ultraviolet (UV)
photodetectors are needed for many military and civilian applications. GaN-based UV
detectors and photocathodes have shown the reliability and sensitivity that are
required for many of these applications. Reliable and efficient photocathodes are also
sought for high-intensity and broad electron sources. Partially Funded by DoE Grant #
DE-FG0206ER84506.

* High Efficiency UV LEDs: Compact, high efficiency solid-state UV light
emitters are needed for applications in sterilization/decontamination, bio/
chemical detection, UV curing, analytical instrumentation and non-line-of-
sight covert communications. In a collaboration with Army Research Lab,
SVTA is developing AlGaN-based UV LEDs, containing nano-compositional
inhomogeneity, that show remarkable improvements in quantum efficiency.
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High-performance AlGaN/GaN HEMTs grown by RF plasma assisted MBE

Al,O, by atomic laver deposition (ALD)
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MBE Grown AIN/GaN HEMTs with Record Performance
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The channel conductivity of high-quality AIGaN/GaN HEMTs is limited to above ~250 Q/o by both surface
roughness and alloy scattering. We have been able to overcome this barrier by growing high quality AIN/GaN
HEMTs on sapphire and SiC with record properties as shown in above figures.
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Nitride thin films grown by pulsed laser deposition

assisted by atomic nitrogen beam
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lon-assisted pulsed laser deposition of aluminum nitride thin films
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High-performance Substrates for [II-N Growth

» Bulk AIN and GaN:
+ Ultra Low Defect (ULD) Densities
+ Thermal Expansion & Lattice Matched
+ High Thermal Conductivity

Bulk AIN

Applications
 High Brightness UV and White LEDs

 Lasers
* Vertical Transport Devices (HBTs and BJTs)

 High Resistivity GaN on Sapphire & SiC: High Resistivity
+ Grown by MBE GaN buffer
+ Excellent Device Isolation
+ Improved DC and RF performance

Applications
« High Electron Mobility Transistors (HEMTs)
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Multi-Quantum Well UV Photodetector
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» Solar-blind UV detection
* High efficiency & sensitivity
 Adjustable band-pass design
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[[I-Nitride Substrate Preparation

SiC (6H or 4H)| Thermal cleaning and annealing
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AIN/GaN MOS-HEMT with Al,O,; Gate Oxide formed by ALD
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Structural Properties of Group |ll Nitrides Grown on

SrTiO3 (111) Substrates by Pulsed Laser Deposition

It has been found that wurtzite AIN and GaN films grow epitaxially
on SrTiO3(111) by the use of PLD. The epitaxial relationship has
been determined to be nitrides(0001) || SrTiO3(111) and nitrides
[10-10] || [11=2]SrTiO3. The in-plane alignment is rotated by 30
along the c-axis from that expected by the notion of lattice
matching. It has been also found that AIN grown on SrTiO3 is
dilated by 0.4% in the normal direction to the surface due to the
lattice mismatch and the smaller thermal contraction during
cooling down from the growth temperature
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Growth of TiN/GaN metal/semiconductor multilayers by reactive pulsed laser deposition

Cross-sectional TEM images of (a) a TiN
(5 nm)/GaN(30 nm) multilayer grown on a
(0001) sapphire substrate and (b) a TiN
(20 nm)/GaN (variable thickness)
multilayer grown on a (100) MgO

substrate.
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(b) ML2, A=6.8 nm, (c) ML3, A=15.9 nm, (d)
ML4, A=19.1 nm, and (e) ML5, A=22.5 nm.
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High Efficiency AlGaN-based UV-LEDs Nano-compositional inhomogeneity (NCI
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Compositional inhomogeneity in InGaN-based LEDs is
known to enhance blue/green emission by increasing carrier
localization High growth temperatures required for AlGaN-
based UV LEDs make In incorporation difficult. Recent work
at Army Research Lab have shown dramatic improvement in
UV-LED efficiency by creating Nano-compositional
inhomogeneities in AlIGaN active layer.
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llI-Nitride: Device Modeling, Processing and Characterization
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